Images reveal that atmospheric particles can undergo liquid-liquid phase separations.
نویسندگان
چکیده
A large fraction of submicron atmospheric aerosol particles contains both organic material and inorganic salts. As the relative humidity cycles in the atmosphere and the water content of the particles correspondingly changes, these mixed particles can undergo a range of phase transitions, possibly including liquid-liquid phase separation. If liquid-liquid phase separation occurs, the gas-particle partitioning of atmospheric semivolatile organic compounds, the scattering and absorption of solar radiation, and the reactive uptake of gas species on atmospheric particles may be affected, with important implications for climate predictions. The actual occurrence of liquid-liquid phase separation within individual atmospheric particles has been considered uncertain, in large part because of the absence of observations for real-world samples. Here, using optical and fluorescence microscopy, we present images that show the coexistence of two noncrystalline phases for real-world samples collected on multiple days in Atlanta, GA as well as for laboratory-generated samples under simulated atmospheric conditions. These results reveal that atmospheric particles can undergo liquid-liquid phase separations. To explore the implications of these findings, we carried out simulations of the Atlanta urban environment and found that liquid-liquid phase separation can result in increased concentrations of gas-phase NO(3) and N(2)O(5) due to decreased particle uptake of N(2)O(5).
منابع مشابه
Effects of molecular weight and temperature on liquid–liquid phase separation in particles containing organic species and inorganic salts
Atmospheric particles containing organic species and inorganic salts may undergo liquid–liquid phase separation when the relative humidity varies between high and low values. To better understand the parameters that affect liquid–liquid phase separation in atmospheric particles, we studied the effects of molecular weight and temperature on liquid–liquid phase separation in particles containing ...
متن کاملUltrafast reversed-phase high-performance liquid chromatographic separations: an overview.
Ultrafast reversed-phase high-performance liquid chromatographic (HPLC) separations are often needed for analyses related to combinatorial chemistry, studies in liquid chromatography-mass spectrometry, and other applications in which very rapid sample turnaround is paramount. Unfortunately, no consensus exists regarding the best column technology for optimally performing the desired rapid separ...
متن کاملPhase Separations in Mixtures of a Nanoparticle and a Liquid Crystal
Liquid crystal suspensions including variousmicroand nano-colloidal particles have recently been received great attention for many practical applications such as nanosensors and devices, etc. When large colloidal particles of micronscale are dispersed in a uniform nematic liquid crystal phase, the colloidal particles disturb a long-range orientational order of the nematic phase. For a strong an...
متن کاملNucleic acid separations using superficially porous silica particles
Ion pair reverse-phase liquid chromatography has been widely employed for nucleic acid separations. A wide range of alternative stationary phases have been utilised in conjunction with ion pair reverse-phase chromatography, including totally porous particles, non-porous particles, macroporous particles and monolithic stationary phases. In this study we have utilised superficially porous silica ...
متن کاملInteractions between spherical colloids mediated by a liquid crystal: a molecular simulation and mesoscale study.
Monte Carlo simulations and dynamic field theory (DyFT) are used to study the interactions between dilute spherical particles, dispersed in nematic and isotropic phases of a liquid crystal. A recently developed simulation method (expanded ensemble density of states) was used to determine the potential of mean force (PMF) between the two spheres as a function of their separation and size. The PM...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 33 شماره
صفحات -
تاریخ انتشار 2012